1 параллелограмм и его свойства. Определение параллелограма и его свойства

Доказательство

Первым делом проведем диагональ AC . Получаются два треугольника: ABC и ADC .

Так как ABCD — параллелограмм, то справедливо следующее:

AD || BC \Rightarrow \angle 1 = \angle 2 как лежащие накрест.

AB || CD \Rightarrow \angle3 = \angle 4 как лежащие накрест.

Следовательно, \triangle ABC = \triangle ADC (по второму признаку: и AC — общая).

И, значит, \triangle ABC = \triangle ADC , то AB = CD и AD = BC .

Доказано!

2. Противоположные углы тождественны.

Доказательство

Согласно доказательству свойства 1 мы знаем, что \angle 1 = \angle 2, \angle 3 = \angle 4 . Таким образом сумма противоположных углов равна: \angle 1 + \angle 3 = \angle 2 + \angle 4 . Учитывая, что \triangle ABC = \triangle ADC получаем \angle A = \angle C , \angle B = \angle D .

Доказано!

3. Диагонали разделены пополам точкой пересечения.

Доказательство

Проведем еще одну диагональ.

По свойству 1 мы знаем, что противоположные стороны тождественны: AB = CD . Еще раз отметим накрест лежащие равные углы.

Таким образом видно, что \triangle AOB = \triangle COD по второму признаку равенства треугольников (два угла и сторона между ними). То есть, BO = OD (напротив углов \angle 2 и \angle 1 ) и AO = OC (напротив углов \angle 3 и \angle 4 соответственно).

Доказано!

Признаки параллелограмма

Если лишь один признак в вашей задаче присутствует, то фигура является параллелограммом и можно использовать, все свойства данной фигуры.

Для лучшего запоминания, заметим, что признак параллелограмма будет отвечать на следующий вопрос — «как узнать?» . То есть, как узнать, что заданная фигура это параллелограмм.

1. Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны.

AB = CD ; AB || CD \Rightarrow ABCD — параллелограмм.

Доказательство

Рассмотрим подробнее. Почему AD || BC ?

\triangle ABC = \triangle ADC по свойству 1 : AB = CD , AC — общая и \angle 1 = \angle 2 как накрест лежащие при параллельных AB и CD и секущей AC .

Но если \triangle ABC = \triangle ADC , то \angle 3 = \angle 4 (лежат напротив AB и CD соответственно). И следовательно AD || BC (\angle 3 и \angle 4 - накрест лежащие тоже равны).

Первый признак верен.

2. Параллелограммом является такой четырехугольник, у которого противоположные стороны равны.

AB = CD , AD = BC \Rightarrow ABCD — параллелограмм.

Доказательство

Рассмотрим данный признак. Еще раз проведем диагональ AC .

По свойству 1 \triangle ABC = \triangle ACD .

Из этого следует, что: \angle 1 = \angle 2 \Rightarrow AD || BC и \angle 3 = \angle 4 \Rightarrow AB || CD , то есть ABCD — параллелограмм.

Второй признак верен.

3. Параллелограммом является такой четырехугольник, у которого противоположные углы равны.

\angle A = \angle C , \angle B = \angle D \Rightarrow ABCD — параллелограмм.

Доказательство

2 \alpha + 2 \beta = 360^{\circ} (поскольку ABCD — четырехугольник, а \angle A = \angle C , \angle B = \angle D по условию).

Получается, \alpha + \beta = 180^{\circ} . Но \alpha и \beta являются внутренними односторонними при секущей AB .

И то, что \alpha + \beta = 180^{\circ} говорит и о том, что AD || BC .

При этом \alpha и \beta — внутренние односторонние при секущей AD . И это значит AB || CD .

Третий признак верен.

4. Параллелограммом является такой четырехугольник, у которого диагонали разделены точкой пересечения пополам.

AO = OC ; BO = OD \Rightarrow параллелограмм.

Доказательство

BO = OD ; AO = OC , \angle 1 = \angle 2 как вертикальные \Rightarrow \triangle AOB = \triangle COD , \Rightarrow \angle 3 = \angle 4 , и \Rightarrow AB || CD .

Аналогично BO = OD ; AO = OC , \angle 5 = \angle 6 \Rightarrow \triangle AOD = \triangle BOC \Rightarrow \angle 7 = \angle 8 , и \Rightarrow AD || BC .

Четвертый признак верен.

Определение

Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны.

На рисунке 1 изображен параллелограмм $A B C D, A B\|C D, B C\| A D$.

Свойства параллелограмма

  1. В параллелограмме противоположные стороны равны: $A B=C D, B C=A D$ (рис 1).
  2. В параллелограмме противоположные углы равны $\angle A=\angle C, \angle B=\angle D$ (рис 1).
  3. Диагонали параллелограмма в точке пересечения делятся пополам $A O=O C, B O=O D$ (рис 1).
  4. Диагональ параллелограмма делит его на два равных треугольника.
  5. Сумма углов параллелограмма, прилежащих к одной стороне равна $180^{\circ}$:

    $$\angle A+\angle B=180^{\circ}, \angle B+\angle C=180^{\circ}$$

    $$\angle C+\angle D=180^{\circ}, \angle D+\angle A=180^{\circ}$$

    Диагонали и стороны параллелограмма связаны следующим соотношением:

    $$d_{1}^{2}+d_{2}^{2}=2 a^{2}+2 b^{2}$$

  6. В параллелограмме угол между высотами равен его острому углу: $\angle K B H=\angle A$.
  7. Биссектрисы углов, прилежащих к одной стороне параллелограмма, взаимно перпендикулярны.
  8. Биссектрисы двух противоположных углов параллелограмма параллельны.

Признаки параллелограмма

Четырехугольник $ABCD$ будет параллелограммом, если

  1. $A B=C D$ и $A B \| C D$
  2. $A B=C D$ и $B C=A D$
  3. $A O=O C$ и $B O=O D$
  4. $\angle A=\angle C$ и $\angle B=\angle D$

Площадь параллелограмма можно вычислить по одной из следующих формул:

$S=a \cdot h_{a}, \quad S=b \cdot h_{b}$

$S=a \cdot b \cdot \sin \alpha, \quad S=\frac{1}{2} d_{1} \cdot d_{2} \cdot \sin \phi$

Примеры решения задач

Пример

Задание. Сумма двух углов параллелограмма равна $140^{\circ}$. Найти больший угол параллелограмма.

Решение. В параллелограмме противоположные углы равны. Обозначим больший угол параллелограмма $\alpha$, а меньший угол $\beta$. Сумма углов $\alpha$ и $\beta$ равна $180^{\circ}$, поэтому заданная сумма, равная $140^{\circ}$, это сумма двух противоположных углов, тогда $140^{\circ} : 2=70^{\circ}$. Таким образом меньший угол $\beta=70^{\circ}$. Больший угол $\alpha$ найдем из соотношения:

$\alpha+\beta=180^{\circ} \Rightarrow \alpha=180^{\circ}-\beta \Rightarrow$

$\Rightarrow \alpha=180^{\circ}-70^{\circ} \Rightarrow \alpha=110^{\circ}$

Ответ. $\alpha=110^{\circ}$

Пример

Задание. Стороны параллелограмма равны 18 см и 15 см, а высота, проведенная к меньшей стороне, равна 6 см. Найти другую высоту параллелограмма.

Решение. Сделаем рисунок (рис. 2)

По условию, $a=15$ см, $b=18$ см, $h_{a}=6$ см. Для параллелограмма справедливы следующие формулы для нахождения площади:

$$S=a \cdot h_{a}, \quad S=b \cdot h_{b}$$

Приравняем правые части этих равенств, и выразим, из полученного равенства, $h_{b} $:

$$a \cdot h_{a}=b \cdot h_{b} \Rightarrow h_{b}=\frac{a \cdot h_{a}}{b}$$

Подставляя исходные данные задачи, окончательно получим:

$h_{b}=\frac{15 \cdot 6}{18} \Rightarrow h_{b}=5$ (см)

Определение

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

Теорема (первый признак параллелограмма)

Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник – параллелограмм.

Доказательство

Пусть в четырехугольнике \(ABCD\) стороны \(AB\) и \(CD\) параллельны и \(AB = CD\) .

Проведём диагональ \(AC\) , разделяющую данный четырехугольник на два равных треугольника: \(ABC\) и \(CDA\) . Эти треугольники равны по двум сторонам и углу между ними (\(AC\) – общая сторона, \(AB = CD\) по условию, \(\angle 1 = \angle 2\) как накрест лежащие углы при пересечении параллельных прямых \(AB\) и \(CD\) секущей \(AC\) ), поэтому \(\angle 3 = \angle 4\) . Но углы \(3\) и \(4\) накрест лежащие при пересечении прямых \(AD\) и \(BC\) секущей \(AC\) , следовательно, \(AD\parallel BC\) . Таким образом, в четырехугольнике \(ABCD\) противоположные стороны попарно параллельны, и, значит, четырехугольник \(ABCD\) – параллелограмм.

Теорема (второй признак параллелограмма)

Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник – параллелограмм.

Доказательство

Проведём диагональ \(AC\) данного четырехугольника \(ABCD\) , разделяющую его на треугольники \(ABC\) и \(CDA\) .

Эти треугольники равны по трем сторонам (\(AC\) – общая, \(AB = CD\) и \(BC = DA\) по условию), поэтому \(\angle 1 = \angle 2\) – накрест лежащие при \(AB\) и \(CD\) и секущей \(AC\) . Отсюда следует, что \(AB\parallel CD\) . Так как \(AB = CD\) и \(AB\parallel CD\) , то по первому признаку параллелограмма четырёхугольник \(ABCD\) – параллелограмм.

Теорема (третий признак параллелограмма)

Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм.

Доказательство

Рассмотрим четырехугольник \(ABCD\) , в котором диагонали \(AC\) и \(BD\) пересекаются в точке \(O\) и делятся этой точкой пополам.


Треугольники \(AOB\) и \(COD\) равны по первому признаку равенства треугольников (\(AO = OC\) , \(BO = OD\) по условию, \(\angle AOB = \angle COD\) как вертикальные углы), поэтому \(AB = CD\) и \(\angle 1 = \angle 2\) . Из равенства углов \(1\) и \(2\) (накрест лежащие при \(AB\) и \(CD\) и секущей \(AC\) ) следует, что \(AB\parallel CD\) .

Итак, в четырехугольнике \(ABCD\) стороны \(AB\) и \(CD\) равны и параллельны, значит, по первому признаку параллелограмма четырехугольник \(ABCD\) – параллелограмм.

Свойства параллелограмма:

1. В параллелограмме противоположные стороны равны и противоположные углы равны.

2. Диагонали параллелограмма точкой пересечения делятся пополам.

Свойства биссектрисы параллелограмма:

1. Биссектриса параллелограмма отсекает от него равнобедренный треугольник.

2. Биссектрисы смежных углов параллелограмма пересекаются под прямым углом.

3. Отрезки биссектрис противоположных углов равны и параллельны.

Доказательство

1) Пусть \(ABCD\) – параллелограмм, \(AE\) – биссектриса угла \(BAD\) .


Углы \(1\) и \(2\) равны как накрест лежащие при параллельных прямых \(AD\) и \(BC\) и секущей \(AE\) . Углы \(1\) и \(3\) равны, так как \(AE\) – биссектриса. В итоге \(\angle 3 = \angle 1 = \angle 2\) , откуда следует, что треугольник \(ABE\) – равнобедренный.

2) Пусть \(ABCD\) – параллелограмм, \(AN\) и \(BM\) – биссектрисы углов \(BAD\) и \(ABC\) соответственно.


Так как сумма односторонних углов при параллельных прямых и секущей равна \(180^{\circ}\) , тогда \(\angle DAB + \angle ABC = 180^{\circ}\) .

Так как \(AN\) и \(BM\) – биссектрисы, то \(\angle BAN + \angle ABM = 0,5(\angle DAB + \angle ABC) = 0,5\cdot 180^\circ = 90^{\circ}\) , откуда \(\angle AOB = 180^\circ - (\angle BAN + \angle ABM) = 90^\circ\) .

3. Пусть \(AN\) и \(CM\) – биссектрисы углов параллелограмма \(ABCD\) .


Так как в параллелограмме противоположные углы равны, то \(\angle 2 = 0,5\cdot\angle BAD = 0,5\cdot\angle BCD = \angle 1\) . Кроме того, углы \(1\) и \(3\) равны как накрест лежащие при параллельных прямых \(AD\) и \(BC\) и секущей \(CM\) , тогда \(\angle 2 = \angle 3\) , откуда следует, что \(AN\parallel CM\) . Кроме того, \(AM\parallel CN\) , тогда \(ANCM\) – параллелограмм, следовательно, \(AN = CM\) .

Как в евклидовой геометрии точка и прямая - главные элементы теории плоскостей, так и параллелограмм является одной из ключевых фигур выпуклых четырехугольников. Из него, как нитки из клубка, втекают понятия «прямоугольника», «квадрата», «ромба» и других геометрических величин.

Вконтакте

Определение параллелограмма

Выпуклый четырехугольник, состоящий из отрезков, каждая пара из которых параллельна, известен в геометрии как параллелограмм.

Как выглядит классический параллелограмм изображает четырехугольник ABCD. Стороны называются основаниями (AB, BC, CD и AD), перпендикуляр, проведенный из любой вершины на противоположную этой вершине сторону, - высотой (BE и BF), линии AC и BD - диагоналями.

Внимание! Квадрат, ромб и прямоугольник - это частные случаи параллелограмма.

Стороны и углы: особенности соотношения

Ключевые свойства, по большому счету, предопределены самим обозначением , их доказывает теорема. Эти характеристики следующие:

  1. Стороны, которые являются противоположными, - попарно одинаковые.
  2. Углы, расположенные противоположно друг другу - попарно равны.

Доказательство: рассмотрим ∆ABC и ∆ADC, которые получаются вследствие разделения четырехугольника ABCD прямой AC. ∠BCA=∠CAD и ∠BAC=∠ACD, поскольку AC для них общая (вертикальные углы для BC||AD и AB||CD, соответственно). Из этого следует: ∆ABC = ∆ADC (второй признак равенства треугольников).

Отрезки AB и BC в ∆ABC попарно соответствуют линиям CD и AD в ∆ADC, что означает их тождество: AB = CD, BC = AD. Таким образом, ∠B соответствует ∠D и они равны. Так как ∠A=∠BAC+∠CAD, ∠C=∠BCA+∠ACD, которые так же попарно одинаковые, то ∠A = ∠C. Свойство доказано.

Характеристики диагоналей фигуры

Основной признак этих линий параллелограмма: точка пересечения разделяет их пополам.

Доказательство: пусть т. Е - это точка пересечения диагоналей AC и BD фигуры ABCD. Они образуют два соизмеримых треугольника - ∆ABE и ∆CDE.

AB=CD, так как они противоположные. Согласно прямых и секущей, ∠ABE = ∠CDE и ∠BAE = ∠DCE.

По второму признаку равенства ∆ABE = ∆CDE. Это означает, что элементы ∆ABE и ∆CDE: AE = CE, BE = DE и при этом они соразмерные части AC и BD. Свойство доказано.

Особенности смежных углов

У смежных сторон сумма углов равна 180° , поскольку они лежат по одну сторону параллельных линий и секущей. Для четырехугольника ABCD:

∠A+∠B=∠C+∠D=∠A+∠D=∠B+∠C=180º

Свойства биссектрисы:

  1. , опущенные на одну сторону, являются перпендикулярными;
  2. противолежащие вершины имеют параллельные биссектрисы;
  3. треугольник, полученный проведением биссектрисы, будет равнобедренным.

Определение характерных черт параллелограмма по теореме

Признаки этой фигуры вытекают из ее основной теоремы, которая гласит следующее: четырехугольник считается параллелограммом в том случае, если его диагонали пересекаются, а эта точка разделяет их на равные отрезки.

Доказательство: пусть в т. Е прямые AC и BD четырехугольника ABCD пересекаются. Так как ∠AED = ∠BEC, а AE+CE=AC BE+DE=BD, то ∆AED = ∆BEC (по первому признаку равенства треугольников). То есть ∠EAD = ∠ECB. Они также являются внутренними перекрестными углами секущей AC для прямых AD и BC. Таким образом, по определению параллельности - AD || BC. Аналогичное свойство линий BC и CD выводится также. Теорема доказана.

Вычисление площади фигуры

Площадь этой фигуры находится несколькими методами, одним из самых простых: умножения высоты и основания, к которому она проведена.

Доказательство: проведем перпендикуляры BE и CF из вершин B и C. ∆ABE и ∆DCF - равные, поскольку AB = CD и BE = CF. ABCD - равновеликий с прямоугольником EBCF, так как они состоят и соразмерных фигур: S ABE и S EBCD , а также S DCF и S EBCD . Из этого следует, что площадь этой геометрической фигуры находится так же как и прямоугольника:

S ABCD = S EBCF = BE×BC=BE×AD.

Для определения общей формулы площади параллелограмма обозначим высоту как hb , а сторону - b . Соответственно:

Другие способы нахождения площади

Вычисления площади через стороны параллелограмма и угол , который они образуют, - второй известный метод.

,

Sпр-ма - площадь;

a и b - его стороны

α - угол между отрезками a и b.

Этот способ практически основывается на первом, но в случае, если неизвестна. всегда отрезает прямоугольный треугольник, параметры которого находятся тригонометрическими тождествами, то есть . Преобразуя соотношение, получаем . В уравнении первого способа заменяем высоту этим произведением и получаем доказательство справедливости этой формулы.

Через диагонали параллелограмма и угол, который они создают при пересечении, также можно найти площадь.

Доказательство: AC и BD пересекаясь, образуют четыре треугольника: ABE, BEC, CDE и AED. Их сумма равна площади этого четырехугольника.

Площадь каждого из этих ∆ можно найти за выражением , где a=BE, b=AE, ∠γ =∠AEB. Поскольку , то в расчетах используется единое значение синуса. То есть . Поскольку AE+CE=AC= d 1 и BE+DE=BD= d 2 , формула площади сводится до:

.

Применение в векторной алгебре

Особенности составляющих частей этого четырехугольника нашли применение в векторной алгебре, а именно: сложении двух векторов. Правило параллелограмма утверждает, что если заданные векторы и не коллинеарны, то их сумма будет равна диагонали этой фигуры, основания которой соответствуют этим векторам.

Доказательство: из произвольно выбранного начала - т. о. - строим векторы и . Далее строим параллелограмм ОАСВ, где отрезки OA и OB - стороны. Таким образом, ОС лежит на векторе или сумме .

Формулы для вычисления параметров параллелограмма

Тождества приведены при следующих условиях:

  1. a и b, α - стороны и угол между ними;
  2. d 1 и d 2 , γ - диагонали и в точке их пересечения;
  3. h a и h b - высоты, опущенные на стороны a и b;
Параметр Формула
Нахождение сторон
по диагоналям и косинусу угла между ними

по диагоналям и стороне

через высоту и противоположную вершину
Нахождение длины диагоналей
по сторонам и величине вершины между ними
по сторонам и одной из диагоналей



Вывод

Параллелограмм как одна из ключевых фигур геометрии находит применение в жизни, например, в строительстве при подсчете площади участка или других измерений. Поэтому знания об отличительных признаках и способах вычисления различных его параметров могут пригодится в любой момент жизни.

В этом разделе мы рассматриваем геометрический объект параллелограмм. Все элементы параллелограмма наследуются от четырехугольника, поэтому рассматривать их мы не будем. А вот свойства и признаки заслуживают детального рассмотрения. Мы разберем:

  • чем признак отличается от свойства;
  • рассмотрим основные свойства и признаки, которые изучают в программе 8 класса;
  • сформулируем еще два дополнительных свойства, которые получим при решении опорных задач.

2.1 Определение параллелограмма

Чтобы правильно давать определения понятиям в геометрии, нужно не просто их заучивать, а понимать, как они формируются. В этом деле нам хорошо помогают схемы родовых понятий. Давайте посмотрим, что это такое.

Наш учебный модуль называется «Четырехугольники» и четырехугольник является ключевым понятием в этом курсе. Мы можем дать следующее определение четырехугольнику:

Четырёхугольник -это многоугольник , у которого четыре стороны и четыре вершины.

В этом определении родовым понятием будет многоугольник. Теперь дадим определение многоугольнику:

Многоугольником называется простая замкнутая ломаная вместе с частью плоскости, которую она ограничивает.

Ясно, что родовым понятием здесь выступает понятие ломаная. Если мы пойдем далее, то придем к понятию отрезка, а затем к конечным понятиям точка и прямая. Таким же образом мы можем продолжить нашу схему вниз:

Если мы потребуем, чтобы у четырехугольника две стороны были параллельны, а две нет, то мы получим фигуру, которая называется трапецией.

Трапеция четырехугольник , у которого две стороны параллельны, а две другие - не параллельны.

А в случае, когда все противоположные стороны параллельны, мы имеем дело с параллелограммом.

Параллелограмм четырехугольник , у которого противоположные стороны параллельны.

2.2 Cвойства параллелограмма

Свойство 1. В параллелограмме противоположные стороны равны и противоположные углы равны.

Докажем это свойство.

Дано: ABCD - параллелограмм.

Доказать: $\angle A = \angle C, \angle B = \angle D, AB = CD, AD = BC.$

Доказательство:

При доказательстве свойств любого геометрического объекта всегда вспоминаем его определение. Итак, параллелограмм – четырехугольник, у которого противоположные стороны параллельны. Ключевым моментом здесь выступает параллельность сторон.

Построим секущую ко всем четырем прямым. Такой секущей будет диагональ BD.


Очевидно, что нужно рассмотреть углы, образованные секущей и параллельными прямыми. Так как прямые параллельны, то накрест лежащие углы равны.

Теперь можно увидеть два равных треугольника по второму признаку.

Из равенства треугольников непосредственно следует первое свойство параллелограмма.

Свойство 2. Диагонали параллелограмма точкой пересечения делятся пополам.


Дано: ABCD - параллелограмм.

Доказать: $AO = OC, BO = OD.$

Доказательство:

Логика доказательства здесь такая же, как и в предыдущем свойстве: параллельность сторон и равенство треугольников. Первый шаг доказательства тот же, что у первого свойства.

Вторым шагом мы доказываем равенство треугольников по второму признаку. Обратите внимание, что равенство $BC=AD$ можно принять без доказательства (используя Свойство 1 ).

Из этого равенства следует, что $AO = OC, BO = OD.$


2.3 Опорная задача №4 (Свойство угла между высотами параллелограмма)


Дано: ABCD - параллелограмм, BK и BM - его высоты, $\angle KBM = 60^0$ .

Найти: $\angle ABK$, $\angle A$

Решение: Приступая к решению этой задачи, нужно иметь ввиду следующее:

высота в параллелограмме перпендикулярна обеим противоположным сторонам

Например, если отрезок $BM$ проведен к стороне $DC$ и является его высотой ($BM \perp DC$), то этот же отрезок будет высотой к противположной стороне ($BM \perp BA$). Это следует из параллельности сторон $AB \parallel DC$.


При решении этой задачи, ценным является свойство, которое мы получаем.

Дополнительное свойство. Угол между высотами параллелограмма, проведенными из его вершины, равен углу при соседней вершине.

2.4 Опорная задача №5 (Свойство биссектрисы параллелограмма)


Биссектриса угла А параллелограмма ABCD пересекает сторону BC в точке L , AD=12 см , AB =10 см . Найти длину отрезка LC .

Решение :

  1. $\angle 1 = \angle 2$ (АК - биссектрисса);
  2. $\angle 2 = \angle 3$ (как накрест лежащие углы при $AD \parallel BC$ и секущей АL);
  3. $\angle 1 = \angle 3$, $\bigtriangleup ABL -$ равнобедренный.

По ходу решения задачи мы получили свойство:

Дополнительное свойство. Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник.

gastroguru © 2017