Арифметическая прогрессия как решать. Учебник по ЕГЭ и ГИА

В математике любая организованная каким-либо способом совокупность чисел, которые следуют друг за другом, называется последовательностью. Из всех существующих последовательностей чисел выделяют два интересных случая: прогрессии алгебраическую и геометрическую.

Что представляет собой арифметическая прогрессия?

Сразу следует сказать, что алгебраическую прогрессию часто называют арифметической, поскольку ее свойства изучает ветвь математики - арифметика.

Эта прогрессия представляет собой такую последовательность чисел, в которой каждый следующий ее член отличается от предыдущего на некоторое постоянное число. Оно называется разностью алгебраической прогрессии. Для определенности обозначим его латинской буквой d.

Примером такой последовательности может быть следующая: 3, 5, 7, 9, 11 ..., здесь видно, что число 5 больше числа 3 на 2, 7 больше 5 тоже на 2, и так далее. Таким образом, в представленном примере d = 5-3 = 7-5 = 9-7 = 11-9 = 2.

Какие бывают арифметические прогрессии?

Характер этих упорядоченных последовательностей чисел во многом определяется знаком числа d. Выделяют следующие виды алгебраических прогрессий:

  • возрастающая, когда d положительное (d>0);
  • постоянная, когда d = 0;
  • убывающая, когда d отрицательное (d<0).

В примере, который приведен в предыдущем пункте, показана возрастающая прогрессия. Примером убывающей является следующая последовательность чисел: 10, 5, 0, -5, -10, -15 ... Постоянная прогрессия, как следует из ее определения, представляет собой совокупность одинаковых чисел.

n-й член прогрессии

Благодаря тому, что каждое последующее число в рассматриваемой прогрессии отличается на константу d от предыдущего, можно легко определить n-й ее член. Для этого нужно знать не только d, но и a 1 - первый член прогрессии. Применяя рекурсивный подход, можно получить формулу алгебраической прогрессии для нахождения n-го члена. Она имеет вид: a n = a 1 + (n-1)*d. Это формула является достаточно простой, и понять ее можно на интуитивном уровне.

Также не представляет никакой сложности ее использование. Например, в прогрессии, которая приведена выше (d=2, a 1 =3), определим 35-й ее член. Согласно формуле, он будет равен: a 35 = 3 + (35-1)*2 = 71.

Формула для суммы

Когда дана некоторая арифметическая прогрессия, то сумма ее первых n членов является часто возникающей задачей, наряду с определением значения n-го члена. Формула суммы алгебраической прогрессии записывается в следующем виде: ∑ n 1 = n*(a 1 +a n)/2, здесь значок ∑ n 1 говорит о том, что суммируются с 1-го по n-й член.

Приведенное выражение можно получить, прибегая к свойствам все той же рекурсии, однако существует более легкий способ доказательства его справедливости. Запишем первые 2 и последние 2 члена этой суммы, выразив их в числах a 1 , a n и d, и получим: a 1 , a 1 +d,...,a n -d, a n . Теперь заметим, что если сложить первый член с последним, то он будет точно равен сумме второго и предпоследнего члена, то есть a 1 +a n . Аналогичным способом можно показать, что эту же сумму можно получить, если сложить третий и предпредпоследний члены, и так далее. В случае парного количества чисел в последовательности получаем n/2 сумм, каждая из которых равна a 1 +a n . То есть получаем вышеприведенную формулу алгебраической прогрессии для суммы: ∑ n 1 = n*(a 1 +a n)/2.

Для непарного количества членов n получается аналогичная формула, если следовать описанным рассуждениям. Только нужно не забыть добавить оставшееся слагаемое, которое находится в центре прогрессии.

Покажем, как пользоваться приведенной формулой на примере простой прогрессии, которая была введена выше (3, 5, 7, 9, 11 ...). Например, необходимо определить сумму первых 15 ее членов. Для начала определим a 15 . Воспользовавшись формулой для n-го члена (см. предыдущий пункт), получаем: a 15 = a 1 + (n-1)*d = 3 + (15-1)*2 = 31. Теперь можно применить формулу суммы алгебраической прогрессии: ∑ 15 1 = 15*(3+31)/2 = 255.

Любопытно привести интересный исторический факт. Формулу для суммы арифметической прогрессии впервые получил Карл Гаусс (знаменитый немецкий математик XVIII века). Когда ему было всего 10 лет, то учитель задал задачу, найти сумму чисел от 1 до 100. Говорят, что маленький Гаусс решил эту задачу за несколько секунд, заметив, что попарно суммируя числа с начала и конца последовательности, всегда можно получить 101, а поскольку таких сумм 50, то он быстро выдал ответ: 50*101 = 5050.

Пример решения задачи

В качестве завершения темы алгебраической прогрессии приведем пример решения еще одной любопытной задачи, закрепив тем самым понимание рассматриваемой темы. Пусть дана некоторая прогрессия, для которой известна разность d = -3, а также ее 35-й член a 35 = -114. Необходимо найти 7-й член прогрессии a 7 .

Как видно из условия задачи, значение a 1 является неизвестным, поэтому напрямую формулой для n-го члена воспользоваться не получится. Также является неудобным способ рекурсии, который в ручную тяжело реализовать, и велика вероятность допустить ошибку. Поступим следующим образом: выпишем формулы для a 7 и a 35 , имеем: a 7 = a 1 + 6*d и a 35 = a 1 + 34*d. Вычтем из первого выражения второе, получим: a 7 - a 35 = a 1 + 6*d - a 1 - 34*d. Откуда следует: a 7 = a 35 - 28*d. Осталось подставить известные данные из условия задачи и записать ответ: a 7 = -114 - 28*(-3) = -30.

Геометрическая прогрессия

Чтобы раскрыть тему статьи полнее, приведем краткое описание еще одного вида прогрессии - геометрической. В математике под этим названием понимают последовательность чисел, в которой каждый последующий член отличается от предыдущего на некоторый множитель. Обозначим этот множитель буквой r. Он называется знаменателем рассматриваемого вида прогрессии. Примером этой последовательности чисел может быть следующая: 1, 5, 25, 125, ...

Как видно из приведенного определения, алгебраическая и геометрическая прогрессии схожи по своей идее. Отличие между ними заключается в том, что первая изменяется медленнее, чем вторая.

Геометрическая прогрессия также может быть возрастающей, постоянной и убывающей. Ее тип зависит от значения знаменателя r: если r>1, то имеет место возрастающая прогрессия, если r<1 - убывающая, наконец, если r = 1 - постоянная, которая в этом случае может также называться постоянной арифметической прогрессией.

Формулы геометрической прогрессии

Как и в случае алгебраической, формулы геометрической прогрессии сводятся к определению ее n-го члена и суммы n слагаемых. Ниже приведены эти выражения:

  • a n = a 1 *r (n-1) - эта формула следует из определения геометрической прогрессии.
  • ∑ n 1 = a 1 *(r n -1)/(r-1). Важно отметить, если r = 1, то приведенная формула дает неопределенность, поэтому ей пользоваться нельзя. В этом случае сумма n членов будет равна простому произведению a 1 *n.

Например, найдем сумму всего 10 членов последовательности 1, 5, 25, 125, ... Зная, что a 1 = 1 и r = 5, получаем: ∑ 10 1 = 1*(5 10 -1)/4 = 2441406. Полученное значение является наглядным примером того, насколько быстро растет геометрическая прогрессия.

Пожалуй, первым упоминанием об этой прогрессии в истории является легенда с шахматной доской, когда друг одного султана, обучив его игре в шахматы, попросил за свою услугу зерно. Причем количество зерна должно было быть следующим: на первую клетку шахматной доски необходимо положить одно зерно, на вторую в два раза больше, чем на первую, на третью в 2 раза больше, чем на вторую и так далее. Султан охотно согласился выполнить эту просьбу, но он не знал, что ему придется опустошить все закрома своей страны, чтобы сдержать данное слово.

Если каждому натуральному числу n поставить в соответствие действительное число a n , то говорят, что задано числовую последовательность :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Итак, числовая последовательность — функция натурального аргумента.

Число a 1 называют первым членом последовательности , число a 2 вторым членом последовательности , число a 3 третьим и так далее. Число a n называют n-м членом последовательности , а натуральное число n его номером .

Из двух соседних членов a n и a n +1 последовательности член a n +1 называют последующим (по отношению к a n ), а a n предыдущим (по отношению к a n +1 ).

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы n-го члена , то есть формулы, которая позволяет определить член последовательности по его номеру.

Например,

последовательность положительных нечётных чисел можно задать формулой

a n = 2n - 1,

а последовательность чередующихся 1 и -1 — формулой

b n = (-1) n +1 .

Последовательность можно определить рекуррентной формулой , то есть формулой, которая выражает любой член последовательности, начиная с некоторого, через предыдущие (один или несколько) члены.

Например,

если a 1 = 1 , а a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Если а 1 = 1, а 2 = 1, a n +2 = a n + a n +1 , то первые семь членов числовой последовательности устанавливаем следующим образом:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Последовательности могут быть конечными и бесконечными .

Последовательность называется конечной , если она имеет конечное число членов. Последовательность называется бесконечной , если она имеет бесконечно много членов.

Например,

последовательность двузначных натуральных чисел:

10, 11, 12, 13, . . . , 98, 99

конечная.

Последовательность простых чисел:

2, 3, 5, 7, 11, 13, . . .

бесконечная.

Последовательность называют возрастающей , если каждый её член, начиная со второго, больше чем предыдущий.

Последовательность называют убывающей , если каждый её член, начиная со второго, меньше чем предыдущий.

Например,

2, 4, 6, 8, . . . , 2n , . . . — возрастающая последовательность;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 / n , . . . — убывающая последовательность.

Последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают, называется монотонной последовательностью .

Монотонными последовательностями, в частности, являются возрастающие последовательности и убывающие последовательности.

Арифметическая прогрессия

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.

a 1 , a 2 , a 3 , . . . , a n , . . .

является арифметической прогрессией, если для любого натурального числа n выполняется условие:

a n +1 = a n + d ,

где d — некоторое число.

Таким образом, разность между последующим и предыдущим членами данной арифметической прогрессии всегда постоянна:

а 2 - a 1 = а 3 - a 2 = . . . = a n +1 - a n = d .

Число d называют разностью арифметической прогрессии .

Чтобы задать арифметическую прогрессию, достаточно указать её первый член и разность.

Например,

если a 1 = 3, d = 4 , то первые пять членов последовательности находим следующим образом:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d = 7 + 4 = 11,

a 4 = a 3 + d = 11 + 4 = 15,

a 5 = a 4 + d = 15 + 4 = 19.

Для арифметической прогрессии с первым членом a 1 и разностью d её n

a n = a 1 + (n - 1)d.

Например,

найдём тридцатый член арифметической прогрессии

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n - 2)d,

a n = a 1 + (n - 1)d,

a n +1 = a 1 + nd ,

то, очевидно,

a n =
a n-1 + a n+1
2

каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.

числа a, b и c являются последовательными членами некоторой арифметической прогрессии тогда и только тогда, когда одно из них равно среднему арифметическому двух других.

Например,

a n = 2n - 7 , является арифметической прогрессией.

Воспользуемся приведённым выше утверждением. Имеем:

a n = 2n - 7,

a n-1 = 2(n - 1) - 7 = 2n - 9,

a n+1 = 2(n + 1) - 7 = 2n - 5.

Следовательно,

a n+1 + a n-1
=
2n - 5 + 2n - 9
= 2n - 7 = a n ,
2
2

Отметим, что n -й член арифметической прогрессии можно найти не толь через a 1 , но и любой предыдущий a k

a n = a k + (n - k )d .

Например,

для a 5 можно записать

a 5 = a 1 + 4d ,

a 5 = a 2 + 3d ,

a 5 = a 3 + 2d ,

a 5 = a 4 + d .

a n = a n-k + kd ,

a n = a n+k - kd ,

то, очевидно,

a n =
a n-k + a n+k
2

любой член арифметической прогрессии, начиная со второго равен полусумме равноотстоящих от него членов этой арифметической прогрессии.

Кроме того, для любой арифметической прогрессии справедливо равенство:

a m + a n = a k + a l ,

m + n = k + l.

Например,

в арифметической прогрессии

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d = 7 + 7·3 = 7 + 21 = 28;

3) a 10 = 28 = (19 + 37)/2 = (a 7 + a 13 )/2;

4) a 2 + a 12 = a 5 + a 9 , так как

a 2 + a 12 = 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n = a 1 + a 2 + a 3 + . . . + a n ,

первых n членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:

Отсюда, в частности, следует, что если нужно просуммировать члены

a k , a k +1 , . . . , a n ,

то предыдущая формула сохраняет свою структуру:

Например,

в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Если дана арифметическая прогрессия, то величины a 1 , a n , d , n и S n связаны двумя формулами:

Поэтому, если значения трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Арифметическая прогрессия является монотонной последовательностью. При этом:

  • если d > 0 , то она является возрастающей;
  • если d < 0 , то она является убывающей;
  • если d = 0 , то последовательность будет стационарной.

Геометрическая прогрессия

Геометрической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

b 1 , b 2 , b 3 , . . . , b n , . . .

является геометрической прогрессией, если для любого натурального числа n выполняется условие:

b n +1 = b n · q ,

где q ≠ 0 — некоторое число.

Таким образом, отношение последующего члена данной геометрической прогрессии к предыдущему есть число постоянное:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q .

Число q называют знаменателем геометрической прогрессии .

Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.

Например,

если b 1 = 1, q = -3 , то первые пять членов последовательности находим следующим образом:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q = -3 · (-3) = 9,

b 4 = b 3 · q = 9 · (-3) = -27,

b 5 = b 4 · q = -27 · (-3) = 81.

b 1 и знаменателем q её n -й член может быть найден по формуле:

b n = b 1 · q n -1 .

Например,

найдём седьмой член геометрической прогрессии 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 · 2 6 = 64 .

b n-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n ,

то, очевидно,

b n 2 = b n -1 · b n +1 ,

каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому (пропорциональному) предшествующего и последующего членов.

Так как верно и обратное утверждение, то имеет место следующее утверждение:

числа a, b и c являются последовательными членами некоторой геометрической прогрессии тогда и только тогда, когда квадрат одного из них равен произведению двух других, то есть одно из чисел является средним геометрическим двух других.

Например,

докажем, что последовательность, которая задаётся формулой b n = -3 · 2 n , является геометрической прогрессией. Воспользуемся приведённым выше утверждением. Имеем:

b n = -3 · 2 n ,

b n -1 = -3 · 2 n -1 ,

b n +1 = -3 · 2 n +1 .

Следовательно,

b n 2 = (-3 · 2 n ) 2 = (-3 · 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

что и доказывает нужное утверждение.

Отметим, что n -й член геометрической прогрессии можно найти не только через b 1 , но и любой предыдущий член b k , для чего достаточно воспользоваться формулой

b n = b k · q n - k .

Например,

для b 5 можно записать

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3 ,

b 5 = b 3 · q 2 ,

b 5 = b 4 · q .

b n = b k · q n - k ,

b n = b n - k · q k ,

то, очевидно,

b n 2 = b n - k · b n + k

квадрат любого члена геометрической прогрессии, начиная со второго равен произведению равноотстоящих от него членов этой прогрессии.

Кроме того, для любой геометрической прогрессии справедливо равенство:

b m · b n = b k · b l ,

m + n = k + l .

Например,

в геометрической прогрессии

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , так как

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n = b 1 + b 2 + b 3 + . . . + b n

первых n членов геометрической прогрессии со знаменателем q 0 вычисляется по формуле:

А при q = 1 — по формуле

S n = nb 1

Заметим, что если нужно просуммировать члены

b k , b k +1 , . . . , b n ,

то используется формула:

S n - S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Например,

в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Если дана геометрическая прогрессия, то величины b 1 , b n , q , n и S n связаны двумя формулами:

Поэтому, если значения каких-либо трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Для геометрической прогрессии с первым членом b 1 и знаменателем q имеют место следующие свойства монотонности :

  • прогрессия является возрастающей, если выполнено одно из следующих условий:

b 1 > 0 и q > 1;

b 1 < 0 и 0 < q < 1;

  • прогрессия является убывающей, если выполнено одно из следующих условий:

b 1 > 0 и 0 < q < 1;

b 1 < 0 и q > 1.

Если q < 0 , то геометрическая прогрессия является знакопеременной: её члены с нечётными номерами имеют тот же знак, что и её первый член, а члены с чётными номерами — противоположный ему знак. Ясно, что знакопеременная геометрическая прогрессия не является монотонной.

Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

P n = b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n ) n / 2 .

Например,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Бесконечно убывающая геометрическая прогрессия

Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1 , то есть

|q | < 1 .

Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю

1 < q < 0 .

При таком знаменателе последовательность знакопеременная. Например,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n . Это число всегда конечно и выражается формулой

S = b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Например,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Связь арифметической и геометрической прогрессий

Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.

a 1 , a 2 , a 3 , . . . d , то

b a 1 , b a 2 , b a 3 , . . . b d .

Например,

1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и

7 1 , 7 3 , 7 5 , . . . — геометрическая прогрессия с знаменателем 7 2 .

b 1 , b 2 , b 3 , . . . — геометрическая прогрессия с знаменателем q , то

log a b 1 , log a b 2 , log a b 3 , . . . — арифметическая прогрессия с разностью log a q .

Например,

2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и

lg 2, lg 12, lg 72, . . . — арифметическая прогрессия с разностью lg 6 .


Например, последовательность \(2\); \(5\); \(8\); \(11\); \(14\)… является арифметической прогрессией, потому что каждый следующий элемент отличается от предыдущего на три (может быть получен из предыдущего прибавлением тройки):

В этой прогрессии разность \(d\) положительна (равна \(3\)), и поэтому каждый следующий член больше предыдущего. Такие прогрессии называются возрастающими .

Однако \(d\) может быть и отрицательным числом. Например , в арифметической прогрессии \(16\); \(10\); \(4\); \(-2\); \(-8\)… разность прогрессии \(d\) равна минус шести.

И в этом случае каждый следующий элемент будет меньше, чем предыдущий. Эти прогрессии называются убывающими .

Обозначение арифметической прогрессии

Прогрессию обозначают маленькой латинской буквой.

Числа, образующие прогрессию, называют ее членами (или элементами).

Их обозначают той же буквой что и арифметическую прогрессию, но с числовым индексом, равным номеру элемента по порядку.

Например, арифметическая прогрессия \(a_n = \left\{ 2; 5; 8; 11; 14…\right\}\) состоит из элементов \(a_1=2\); \(a_2=5\); \(a_3=8\) и так далее.

Иными словами, для прогрессии \(a_n = \left\{2; 5; 8; 11; 14…\right\}\)

Решение задач на арифметическую прогрессию

В принципе, изложенной выше информации уже достаточно, чтобы решать практически любую задачу на арифметическую прогрессию (в том числе из тех, что предлагают на ОГЭ).

Пример (ОГЭ). Арифметическая прогрессия задана условиями \(b_1=7; d=4\). Найдите \(b_5\).
Решение:

Ответ: \(b_5=23\)

Пример (ОГЭ). Даны первые три члена арифметической прогрессии: \(62; 49; 36…\) Найдите значение первого отрицательного члена этой прогрессии..
Решение:

Нам даны первые элементы последовательности и известно, что она – арифметическая прогрессия. То есть, каждый элемент отличается от соседнего на одно и то же число. Узнаем на какое, вычтя из следующего элемента предыдущий: \(d=49-62=-13\).

Теперь мы можем восстановить нашу прогрессию до нужного нам (первого отрицательного) элемента.

Готово. Можно писать ответ.

Ответ: \(-3\)

Пример (ОГЭ). Даны несколько идущих подряд элементов арифметической прогрессии: \(…5; x; 10; 12,5...\) Найдите значение элемента, обозначенного буквой \(x\).
Решение:


Чтоб найти \(x\), нам нужно знать на сколько следующий элемент отличается от предыдущего, иначе говоря – разность прогрессии. Найдем ее из двух известных соседних элементов: \(d=12,5-10=2,5\).

А сейчас без проблем находим искомое: \(x=5+2,5=7,5\).


Готово. Можно писать ответ.

Ответ: \(7,5\).

Пример (ОГЭ). Арифметическая прогрессия задана следующими условиями: \(a_1=-11\); \(a_{n+1}=a_n+5\) Найдите сумму первых шести членов этой прогрессии.
Решение:

Нам нужно найти сумму первых шести членов прогрессии. Но мы не знаем их значений, нам дан только первый элемент. Поэтому сначала вычисляем значения по очереди, используя данное нам :

\(n=1\); \(a_{1+1}=a_1+5=-11+5=-6\)
\(n=2\); \(a_{2+1}=a_2+5=-6+5=-1\)
\(n=3\); \(a_{3+1}=a_3+5=-1+5=4\)
А вычислив нужные нам шесть элементов - находим их сумму.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Искомая сумма найдена.

Ответ: \(S_6=9\).

Пример (ОГЭ). В арифметической прогрессии \(a_{12}=23\); \(a_{16}=51\). Найдите разность этой прогрессии.
Решение:

Ответ: \(d=7\).

Важные формулы арифметической прогрессии

Как видите, многие задачи по арифметической прогрессии можно решать, просто поняв главное – то, что арифметическая прогрессия есть цепочка чисел, и каждый следующий элемент в этой цепочке получается прибавлением к предыдущему одного и того же числа (разности прогрессии).

Однако порой встречаются ситуации, когда решать «в лоб» весьма неудобно. Например, представьте, что в самом первом примере нам нужно найти не пятый элемент \(b_5\), а триста восемьдесят шестой \(b_{386}\). Это что же, нам \(385\) раз прибавлять четверку? Или представьте, что в предпоследнем примере надо найти сумму первых семидесяти трех элементов. Считать замучаешься…

Поэтому в таких случаях «в лоб» не решают, а используют специальные формулы, выведенные для арифметической прогрессии. И главные из них это формула энного члена прогрессии и формула суммы \(n\) первых членов.

Формула \(n\)-го члена: \(a_n=a_1+(n-1)d\), где \(a_1\) – первый член прогрессии;
\(n\) – номер искомого элемента;
\(a_n\) – член прогрессии с номером \(n\).


Эта формула позволяет нам быстро найти хоть трехсотый, хоть миллионный элемент, зная только первый и разность прогрессии.

Пример. Арифметическая прогрессия задана условиями: \(b_1=-159\); \(d=8,2\). Найдите \(b_{246}\).
Решение:

Ответ: \(b_{246}=1850\).

Формула суммы n первых членов: \(S_n=\frac{a_1+a_n}{2} \cdot n\), где



\(a_n\) – последний суммируемый член;


Пример (ОГЭ). Арифметическая прогрессия задана условиями \(a_n=3,4n-0,6\). Найдите сумму первых \(25\) членов этой прогрессии.
Решение:

\(S_{25}=\)\(\frac{a_1+a_{25}}{2 }\) \(\cdot 25\)

Чтобы вычислить сумму первых двадцати пяти элементов, нам нужно знать значение первого и двадцать пятого члена.
Наша прогрессия задана формулой энного члена в зависимости от его номера (подробнее смотри ). Давайте вычислим первый элемент, подставив вместо \(n\) единицу.

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Теперь найдем двадцать пятый член, подставив вместо \(n\) двадцать пять.

\(n=25;\) \(a_{25}=3,4·25-0,6=84,4\)

Ну, а сейчас без проблем вычисляем искомую сумму.

\(S_{25}=\)\(\frac{a_1+a_{25}}{2}\) \(\cdot 25=\)
\(=\) \(\frac{2,8+84,4}{2}\) \(\cdot 25 =\)\(1090\)

Ответ готов.

Ответ: \(S_{25}=1090\).

Для суммы \(n\) первых членов можно получить еще одну формулу: нужно просто в \(S_{25}=\)\(\frac{a_1+a_{25}}{2}\) \(\cdot 25\) вместо \(a_n\) подставить формулу для него \(a_n=a_1+(n-1)d\). Получим:

Формула суммы n первых членов: \(S_n=\)\(\frac{2a_1+(n-1)d}{2}\) \(\cdot n\), где

\(S_n\) – искомая сумма \(n\) первых элементов;
\(a_1\) – первый суммируемый член;
\(d\) – разность прогрессии;
\(n\) – количество элементов в сумме.

Пример. Найдите сумму первых \(33\)-ех членов арифметической прогрессии: \(17\); \(15,5\); \(14\)…
Решение:

Ответ: \(S_{33}=-231\).

Более сложные задачи на арифметическую прогрессию

Теперь у вас есть вся необходимая информация для решения практически любой задачи на арифметическую прогрессию. Завершим тему рассмотрением задач, в которых надо не просто применять формулы, но и немного думать (в математике это бывает полезно ☺)

Пример (ОГЭ). Найдите сумму всех отрицательных членов прогрессии: \(-19,3\); \(-19\); \(-18,7\)…
Решение:

\(S_n=\)\(\frac{2a_1+(n-1)d}{2}\) \(\cdot n\)

Задача очень похожа на предыдущую. Начинаем решать также: сначала найдем \(d\).

\(d=a_2-a_1=-19-(-19,3)=0,3\)

Теперь бы подставить \(d\) в формулу для суммы… и вот тут всплывает маленький нюанс – мы не знаем \(n\). Иначе говоря, не знаем сколько членов нужно будет сложить. Как это выяснить? Давайте думать. Мы прекратим складывать элементы тогда, когда дойдем до первого положительного элемента. То есть, нужно узнать номер этого элемента. Как? Запишем формулу вычисления любого элемента арифметической прогрессии: \(a_n=a_1+(n-1)d\) для нашего случая.

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Нам нужно, чтоб \(a_n\) стал больше нуля. Выясним, при каком \(n\) это произойдет.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Делим обе части неравенства на \(0,3\).

\(n-1>\)\(\frac{19,3}{0,3}\)

Переносим минус единицу, не забывая менять знаки

\(n>\)\(\frac{19,3}{0,3}\) \(+1\)

Вычисляем…

\(n>65,333…\)

…и выясняется, что первый положительный элемент будет иметь номер \(66\). Соответственно, последний отрицательный имеет \(n=65\). На всякий случай, проверим это.

\(n=65;\) \(a_{65}=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_{66}=-19,3+(66-1)·0,3=0,2\)

Таким образом, нам нужно сложить первые \(65\) элементов.

\(S_{65}=\)\(\frac{2 \cdot (-19,3)+(65-1)0,3}{2}\) \(\cdot 65\)
\(S_{65}=\)\({-38,6+19,2}{2}\)\(\cdot 65=-630,5\)

Ответ готов.

Ответ: \(S_{65}=-630,5\).

Пример (ОГЭ). Арифметическая прогрессия задана условиями: \(a_1=-33\); \(a_{n+1}=a_n+4\). Найдите сумму от \(26\)-го до \(42\) элемента включительно.
Решение:

\(a_1=-33;\) \(a_{n+1}=a_n+4\)

В этой задаче также нужно найти сумму элементов, но начиная не с первого, а с \(26\)-го. Для такого случая у нас формулы нет. Как решать?
Легко - чтобы получить сумму с \(26\)-го до \(42\)-ой, надо сначала найти сумму с \(1\)-ого по \(42\)-ой, а потом вычесть из нее сумму с первого до \(25\)-ого (см картинку).


Для нашей прогрессии \(a_1=-33\), а разность \(d=4\) (ведь именно четверку мы добавляем к предыдущему элементу, чтоб найти следующий). Зная это, найдем сумму первых \(42\)-ух элементов.

\(S_{42}=\)\(\frac{2 \cdot (-33)+(42-1)4}{2}\) \(\cdot 42=\)
\(=\)\(\frac{-66+164}{2}\) \(\cdot 42=2058\)

Теперь сумму первых \(25\)-ти элементов.

\(S_{25}=\)\(\frac{2 \cdot (-33)+(25-1)4}{2}\) \(\cdot 25=\)
\(=\)\(\frac{-66+96}{2}\) \(\cdot 25=375\)

Ну и наконец, вычисляем ответ.

\(S=S_{42}-S_{25}=2058-375=1683\)

Ответ: \(S=1683\).

Для арифметической прогрессии существует еще несколько формул, которые мы не рассматривали в данной статье ввиду их малой практической полезности. Однако вы без труда можете найти их .

Задачи по арифметической прогрессии существовали уже в глубокой древности. Они появлялись и требовали решения, поскольку имели практическую необходимость.

Так, в одном из папирусов Древнего Египта, имеющем математическое содержание, - папирусе Райнда (XIX век до нашей эры) - содержится такая задача: раздели десять мер хлеба на десять человек, при условии если разность между каждым из них составляет одну восьмую меры».

И в математических трудах древних греков встречаются изящные теоремы, имеющие отношение к арифметической прогрессии. Так, Гипсикл Александрийский (II век составивший немало интересных задач и добавивший четырнадцатую книгу к «Началам» Евклида, сформулировал мысль: «В арифметической прогрессии, имеющей четное число членов, сумма членов 2-ой половины больше суммы членов 1-ой на квадрату 1/2 числа членов».

Обозначается последовательность an. Числа последовательности называются ее членами и обозначаются обычно буквами с индексами, которые указывают порядковый номер этого члена (a1, a2, a3 … читается: «a 1-ое», «a 2-ое», «a 3-тье» и так далее).

Последовательность может быть бесконечной или конечной.

А что же такое арифметическая прогрессия? Под ней понимают получаемую сложением предыдущего члена (n) с одним и тем же числом d, являющимся разностью прогрессии.

Если d<0, то мы имеем убывающую прогрессию. Если d>0, то такая прогрессия считается возрастающей.

Арифметическая прогрессия называется конечной, если учитываются только несколько ее первых членов. При очень большом количестве членов это уже бесконечная прогрессия.

Задается любая арифметическая прогрессия следующей формулой:

an =kn+b, при этом b и k - некоторые числа.

Абсолютно верно утверждение, являющееся обратным: если последовательность задается подобной формулой, то это точно арифметическая прогрессия, которая имеет свойства:

  1. Каждый член прогрессии - среднее арифметическое предыдущего члена и последующего.
  2. Обратное: если, начиная со 2-ого, каждый член - среднее арифметическое предыдущего члена и последующего, т.е. если выполняется условие, то данная последовательность - арифметическая прогрессия. Это равенство одновременно является и признаком прогрессии, поэтому его, как правило, называют характеристическим свойством прогрессии.
    Точно так же верна теорема, которая отражает это свойство: последовательность - арифметическая прогрессия только в том случае, если это равенство верно для любого из членов последовательности, начиная со 2-ого.

Характеристическое свойство для четырёх любых чисел арифметической прогрессии может быть выражено формулой an + am = ak + al, если n + m = k + l (m, n, k - числа прогрессии).

В арифметической прогрессии любой необходимый (N-й) член найти можно, применяя следующую формулу:

К примеру: первый член (a1) в арифметической прогрессии задан и равен трём, а разность (d) равняется четырём. Найти нужно сорок пятый член этой прогрессии. a45 = 1+4(45-1)=177

Формула an = ak + d(n - k) позволяет определить n-й член арифметической прогрессии через любой ее k-тый член при условии, если он известен.

Сумма членов арифметической прогрессии (подразумевается 1-ые n членов конечной прогрессии) вычисляется следующим образом:

Sn = (a1+an) n/2.

Если известны и 1-ый член, то для вычисления удобна другая формула:

Sn = ((2a1+d(n-1))/2)*n.

Сумма арифметической прогрессии, которая содержит n членов, подсчитывается таким образом:

Выбор формул для расчетов зависит от условий задач и исходных данных.

Натуральный ряд любых чисел, таких как 1,2,3,...,n,...- простейший пример арифметической прогрессии.

Помимо арифметической прогрессии существует еще и геометрическая, которая обладает своими свойствами и характеристиками.

gastroguru © 2017